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LIQUID CRYSTALS, 1989, VOL. 4, No. 4, 409-422 

Analysis of transient periodic textures in nematic polymers 

by ALEJANDRO D. REYt and MORTON M. DENN 
Center for Advanced Materials, Lawrence Berkeley Laboratory and 

Department of Chemical Engineering, University of California, Berkeley, 
California 94720, U.S.A. 

A numerical solution of the Leslie-Ericksen equations for nematic liquid 
crystals is obtained for in-plane rotation of a strong magnetic field. A transient 
periodic orientation develops as a result of in-plane director motion and the 
induced shear flow. At long times the in-plane director orientation results in steady 
splay-bend inversion walls. A linear stability analysis shows that the inversion walls 
are unstable to perturbations out of the plane for elastic coefficients characteristic 
of nematic polymers. Calculations of transmitted light intensity through crossed 
polarizers for the computed orientation development predict the evolution of a 
banded texture, as observed experimentally. 

1. Introduction 
Transient periodic textures are observed in nematic polymers during orientation 

in a magnetic field [l-51 and during relaxation following shear [6-lo]. There is no 
conclusive analysis indicating a connection between these two phenomena, but they 
do exhibit the same apparent macroscopic response. We present a treatment here of 
the kinetics of periodic textures induced by magnetic orientation. It is possible that 
the understanding of this phenomenon will elucidate mechanisms for the banded 
textures during shear relaxation as well. 

Nematic liquids have uniaxial symmetry described by a unit director n whose 
orientation is affected by the presence of bounding surfaces, electromagnetic fields, 
and flow fields. The liquid responds to orienting fields through curvature elasticity, 
characterized by three basic modes of deformation: splay, twist, and bend [I  11. If a 
nematic liquid has a positive anisotropic diamagnetic susceptibility, a sufficiently high 
magnetic field will tend to co-align the director everywhere except in a small region 
near the bounding surfaces [l 1, 121. A transient periodic response, giving rise to 
banded textures under polarized light, is common with nematic polymers when an 
oriented sample is subjected to a sufficiently strong field transverse to the initial 
uniform director orientation. This periodic response is due to strong back-flow effects 
(coupling between fluid flow and director reorientation), in which opposed rotating 
regions produce shear flows characterized by lower viscosities than those in pure 
rotation. This kinetic mechanism favors short wave lengths, but short wave lengths 
tend to increase the total elastic energy. The competing effects find an optimal 
balance, resulting in a fastest growing periodic mode El]. 

In this work we use the Leslie-Ericksen continuum theory [I 1, 131 to describe the 
temporal evolution of the macroscopic orientation and velocity fields, neglecting 
fluctuations [14] but taking into account the nonlinearities at longer times and the 
formation of splay-bend inversion walls [I 11. We show that the mechanism for the 

t Present address: Department of Chemical Engineering, McGill University, Montreal, 
Canada H3A2A7. 
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410 A. Rey and M. M. Denn 

initial decay of the periodic structures is through an out-of-plane instability, which 
occurs when there is enough anisotropy in the elastic constants of the nematic 
polymer to induce a transition from a splay-bend wall to a twist wall. 

2. Theory and balance equations 
The free energy density of the elastic deformation, F, is given in the Leslie-Ericksen 

theory of nematic continua by 

2 F  = K, , (V * n)' + K2,(n - V x n)' + K,, I n x V x n 1 2 ,  (1) 

where K , , ,  KZ2 and K,, are the elastic constants for splay, twist, and bend, respectively. 
The kinematic variables are the velocity, v, and the director, n. These fields are 
coupled through the antisymmetric part of the stress tensor, hence flow induces 
orientation and reorientation induces flow. The fluid is treated as incompressible, with 
a density e. The inertia of the director is neglected. The balance equations, using 
Cartesian tensor notation, are 

and 

The mechanical quantities are as follows: F,, external body force per unit volume; G,, 
external director body force per unit volume; tJ,, stress tensor; nJ,, intrinsic director 
surface stress tensor; g,, intrinsic director body force. The constitutive equations for 
the stresses are as follows: 

aF 
t,, = -PS,, - - nk.r + a,nknmAkmn,n, + u2n,N, 

+ a3n", + a4AJI + cc5nJnkAki  + a6n ,nkAkJr  (3 4 

(3 b) 

The kinematical quantities are defined as follows: 

Aik = k ( v t , k  + Z)k . i )>  (4 4 
N~ = n~ + $ ( v i , k  - v k , r > n k .  (4 b) 

A,, is the rate of deformation tensor and N, is the angular velocity of the director 
relative to that of the fluid. The { a , }  are the six Leslie viscosities [13]. I ,  and I 2  are 
defined as follows: 

1, = f f 2  - a3, (5  co 
I2 = a5 - u6 = -(a2 + u,). ( 5  6) 

The scalar functions p and 7, and the vector function /I, are required because of the 
constraints of incompressibility and director unit length. The equality in the expression 
for I 2  is due to Parodi [13]. Parameter values for the synthetic polypeptide poly- 
benzylglutamate (PBG) reported by Taratuta et al. [ I  51 are listed in the table; this is 
one of the best-characterized nematic polymers, and these values are used for 
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Periodic textures in nematic polymers 41 1 

Physical constants for PLG. 

Viscosities 

(Pa s) 
E l i  

a4 t 
u2 
a3 

4 

Elastic constants 
(Newtons) x 10l2 

u6 

K,,  
K22 
K3, 
Anisotropic diamagnetic 
susceptibility 
(SI units) x 106 
X a  

- 2.280 
- 3.480 
- 0.014 

0.287 
3.233 

- 0.261 

4.1 
0.36 
4.7 

8.8 

t Estimated using Marrucci hard rod theory [I61 with an order parameter S = 0.8. 

subsequent numerical computations. It is significant that K, ,  = K,, 9 K22.  Two 
assumptions based on Marrucci’s hard rod theory [ 161 are needed to complete the 
table. The value of the anisotropic magnetic susceptibility for the optically-active 
isomer PBLG from Du Pre et al. [17] is included in the table and is used in the 
numerical calculations. The number of this section is concerned with obtaining the 
partial differential equations describing the transient periodic structures. The 
phenomenon is best represented in Cartesian (x, y ,  z )  coordinates; see figure 1. The 
initial state is one of uniform alignment in the z-direction with a director field 

no = (0, 0, 1). (6) 

H = ( H ,  0, 0). (7) 

At time t = 0 a uniform magnetic field is imposed in the x-direction, 

Figure 1. Schematic of the nematic cell at f = 0 and definition of coordinates. The applied 
field H is in the x direction. Cell surfaces are at y = 0 and D .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



412 A. Rey and M. M. Denn 

The x-z plane is assumed to be of infinite extent (i.e. D is much less than any 
characteristic dimension of the bounding surfaces of the cell). 

Following Lonberg et al. [I] we first assume that the director is in the x-z plane, 

where e(x, y ,  z, t )  describes the in-plane angle of the director relative to the initial 
orientation. The velocity field has a component only in the field direction, 

and, because of continuity, that component cannot depend on x. Since this is a 
reorientation-driven flow the pressure does not affect the linear momentum balance. 
In the presence of a magnetic field H, the external director body force G is given by 

n = (sine, 0, cose) (8) 

v = (u,  0, 0) (9) 

where za is the anisotropic diamagnetic susceptibility. With the above assumptions the 
director equation ( 2  b) becomes 

au h’ 2 (?I az + h (2) + K22 ($) - A, r;) - L ( A ,  2 cosfl - A , )  - aZ 

Here 
+ )xaH2sin28 = 0. 

h(0)  = K,,  sinZ 8 + K3, cos28, 

h’(0) = (K, ,  - K3,)sin28. (12b) 
For K , ,  = K,, we have h = K,,,  h’ = 0. The x-component of the momentum balance, 
equation (2.2a), is 

where the angle-dependent combinations of viscosity coefficients {qi> are tabulated in 
Appendix A. 

In the linear approximation of Lonberg et al. [l] the coefficients v ] , ,  qs ,  and t&, are 
constants, while the terms containing the other {qi} in equation (1 3) and the quadratic 
term containing h’ in equation (1 1) are neglected. This approximation will be valid in 
the limit 8 -+ 0 (i.e. for short times). The resulting equations admit a solution in terms 
of Fourier components of the form 

e( y ,  z ,  t )  = eo exp ($) cos (y) sin @) , 

L 

8, is the initial (infinitesimal) amplitude of the disturbance, and L is the Fourier wave 
length. The growth rate s is given by 

za H ~ D *  D2 
K22 - K33 - n2 L2 

-- 
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Periodic textures in nematic polymers 413 

with 2 ~ ,  = - ct2 + ct4 + as and 211, = ct4. All modes grow in time as long as the field 
exceeds the critical value for a Freedericksz transition [l I]. Since there is no interaction 
between modes in the linear theory, the wave length of the Fourier mode with the 
fastest growth rate will be observed. This mode will satisfy 

ds 
- = 0, dL 

which leads to a quadratic equation in (D/L)’ in terms of the strength of the magnetic 
field, the elastic coefficients, and the rheological parameters. 

In our nonlinear approach we assume that the periodic response at long times 
retains the dominant wave length defined by equation (16). Equations (1 1 )  and (13) 
are solved in dimensionless form with periodic boundary conditions at z = 0 and L 
and no slip (u = 0) and fixed anchoring (8 = 0) conditions at y = 0 and D. The time 
and velocity scales of the transient are as follows, respectively: 

u = --iE> X ~ H ~ D  L 
1, 

For typical anisotropic susceptibilities of SI units, the time scale for low molecular 
weight nematics is of the order of seconds, while for nematic polymers [19, 20, 211 it 
is o f  the order of minutes to hours. 

All numerical solutions of the boundary value problem reported subsequently 
were obtained using the Galerkin finite element technique, with quadratic shape 
functions over ten elements in each coordinate (see, e.g., Fletcher [22]). Newton- 
Raphson iteration was used for solution of the non-linear system of algebraic equa- 
tions. The time integration scheme was a first order Euler predictor-corrector method 
(see, e.g., Lapidus and Pinder [23]). Unless otherwise noted, the field strength was 
chosen to give L / D  = 3, with D taken as 1OP2mm; this corresponds to a field of 
15 x 10-3tesla for the parameter values in the table. The linear solution with 
8, = lo-’ radians was used to define conditions at t = 0. Parameter values are given 
in the table. 

3. Numerical solutions 
The maximum angle of distortion as a function of time is shown as the solid line 

in figure 2, with the linear theory given by equation (14a) as the dashed line. The 
maximum angle in our coordinate system occurs at y / D  = 0.5, z/L = 0. The linear 
solution is a good approximation for about the first 1.5 hours for the parameters 
characteristic of PBG, after which the exact solution tends to saturation at a new 
steady state value. The small difference in the initial growth rate is a result of the 
numerical discretization, and was found to decrease with refinement of the time 
integration step size. The maximum (centre plane) dimensionless velocity as a function 
of time is shown in figure 3. Again, the linear solution is a good approximation until 
about t = 1.5 hours, after which the exact solution decays to zero as the director 
approaches the steady state value and the driving force for flow vanishes. The director 
orientation as a function of dimensionless position over half a wave length is shown 
in figure 4 at the midplane ( y / D  = 0.5) and 40 and 80 per cent of the distance to the 
bounding plane. The parameter is the dimensionless time. The periodic distortions 
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414 A. Rey and M. M. Denn 
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Figure 2.  Computed maximum director angle as a function of time, LID = 3 .  The dashed 
line is the linear solution (equation (14 a)).  
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Figure 3 .  Computed maximum dimensionless velocity as a function of time, LID = 3 .  The 
dashed line is the linear solution (Equation (14 c)). 

involve large counter rotations at the edges of the cell, with the largest deformations 
at the midplane. The corresponding velocity profiles are shown in figures 5. (There is 
backflow in the right half of the cell to maintain continuity.) The strength of the 
magnetic field determines the time scale of the response and the magnitudes of the 
deformation and velocity fields. Time and velocity scale with H2. The maximum 
steady state angle as a function of LID is shown in figure 6. The effect here is a weak 
one, since there are two competing factors. Lzrger fields favor larger deformations, 
but shorter wave lengths favor smaller deformations. The transition region sharpens 
relative to L with decreasing field strength (corresponding to increasing LID). The 
steady state center plane director profile is shown in figure 7 for LID = 30, corre- 
sponding to H = 9 x 10-’tesla for the parameters used here. This profile is of the 
form of a splay-bend wall; for D --+ m (i.e. in the absence of bounding planes) and 
K , ,  = K,, = K, a splay-bend wall is described by the equation [24] 

O(z) = tan-’exp [ fz J(T)]. 
It is useful in what follows to note that equation (18) is closely approximated by 
a straight line in the interval -d/2 < z < d/2,  and 8 = +n/2  otherwise, with d 
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Periodic textures in nematic polymers 415 

ln z 
< n 
0 < a 

z 
0 
c < c z 
K 
0 

n 

ttl 

1.2  

0. 6 

0.0 

-. 6 
I 1 I I I I I I t (b) 

-. 6 - 

0. 6 I 
0. 0 

-. 6 

-1 .2 L I I I I I 
0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 

DIMENSIONLESS OISTANCE, z/L 

Figure 4. Director orientation profiles, L / D  = 3. Curve A, za H 2 t / l ,  = 0.51; B, 2.88; C, 4.04. 
(a) y / l )  = 0 3 ;  (b) y / D  = 0.7; (c) y / D  = 0.9. 

given by 

= ;J(:) 
For  finite D the structure is the same, with the wall thickness d scaling as H - ' ,  but 
the maximum angle is less than n/2. 

It is important to note that the steady-state in-plane solutions computed here will 
lead to permanent banded textures, in contrast to the experimental observations cited 
in the introduction. We show in the next section that splay-bend walls are unstable 
to out-of-plane perturbations for values of the elastic coefficients reported for polymers, 
and the banded texture can not persist. This is consistent with the observation [24] 
that splay-bend walls have a larger surface tension than twist walls. 

4. Linear stability analysis of splay-bend walls 
To a first approximation, we can neglect the cell surface effects on the director and 

consider only the splay-bend deformations, neglecting the twist deformation close to 
the bounding surfaces. O(z) is used to denote the steady-state solution. We consider 
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B 
0.10 - 

B 

-. 05 ' I I I I J 
0. 0 0. 2 0. 4 0. 6 0. B 1.0 

DIMENSIONLESS OISTANCE, z/L 

Figure 5. Dimensionless velocity profile, L / D  = 3. Curve A, X a H 2 t / l ,  = 0.51; B, 2.88; 
C, 4.04. (a)  y / D  = 0.5; (b)  y / D  = 0.7; ( c )  y / D  = 0.9. 

0. 5 

0.0' I I I 
0 10 20 30 

DIMENSIONLESS WAVE LENGTH, L/D 

Figure 6.  Effect of wave length ratio (equivalent to field strength) on the steady state maximum 
director angle. 
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1 .2  1 I I I I 

DIMENSIONLESS DISTANCE, z/L 

Figure 7. Steady state director orientation at the centre plane ( y / D  = 0.5), LID = 30. 

small in- and out-of-plane perturbations $(z7 t )  and ( ( z ,  t ) ,  respectively, resulting in 
a director field given by 

n, = sin0 + cI/ ~ 0 ~ 8 ,  (20 a> 

n y  = t, (20 b) 

n, = cos8 - 1+4 sin8. (20 c> 
We neglect terms of order $’ and t2, in which case the director retains a unit 
magnitude. Substituting this director field into equation (2 b) and retaining only linear 
terms in the perturbation, the evolution equation for the y (twist) component [(z ,  t )  
becomes 

(21) 
a t  A1 -& = + B(@)t, + C ( 0 ) t Z Z  

where 
A ( @ )  = ( 3 ( ~ , ,  - K,,)COS~~ + K, ,  + K~~ - K,,,W; 

+ (K, , tan 0 + (K3, - K22) sin 0 cos 0) 0,,, (22 4 
B(B) = (K22 - K,,)sin20, (22 b) 

C(0) = (K33 - K2,)c0s20 - K22. (22 4 
The boundary conditions are ( -+ 0 as z -+ & GO. 

solutions of the form 

It is convenient to scale the length by the thickness of the splay-bend wall, d, given 
by equation (19). In that case the evolution equation (21) becomes 

Equation (21) is parabolic with position dependent coefficients and must have 

5(z, t )  = exp (at)  W). (23) 

where 1, = A,d and 5 = 2/d. This is an eigenvalue problem for the growth rate cr. 
Steady solutions given by equation (1 8) will be unstable to out-of-plane solutions if 
any eigenvalue is positive. Marginal stability is defined by CJ = 0. 

We use the linear approximation to the steady-state wall profile for convenience, 
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418 A. Rey and M. M. Denn 

in which case the boundary condition at  infinity is replaced by 

4 = 0 at i = 0 , l .  (26) 
(Note that the origin has been moved to the edge of the wall for convenience.) The 
dominant eigenvalue is then obtained exactly. The first eigenfunction to equation (24) 
is readily shown to be 

The condition o >/ 0 then follows immediately from equation (24) as 
q5 = sin(xc). (27) 

which indicates that the wall is absolutely unstable to arbitrarily small symmetric 
perturbations unless the twist is at least equal to the average bend and splay elastic 
constants. K22 is found to be much less than K , ,  or K33 for nematic polymers. 

Higher harmonics are not eigenfunctions, but a spectral method [25, 261 can be 
used to obtain approximations to the eigenvalues and eigenfunctions. Details are 
given by Rey [27]. The eigenvalues are real and ordered. The second and third 
eigenvalues at (T = 0 lead to critical conditions K2* d (2K,, - 3K33)/(n2 + 1) for 
n = 2 and 3 ,  respectively, and these are clearly dominated by equation (28). 

The linear approximation for q5 is not necessary, but it simplifies the analysis 
greatly. Sufficient conditions for stability to infinitesimal perturbations can also be 
obtained analytically, and these do not require the linear approximation (though the 
analysis is again simplified) [27]. 

The linear theory can only account for initial growth of the out-of-plane perturba- 
tion, which will develop into a twist wall as shown in figure (8). The final stage in the 
defect-controlled dynamics is likely to be the rupture of the twist wall through the 
development of a pair of disclination lines [2]. 

5. Dynamics of banded textures 
The experimental observations of the periodic response of nematic polymers by 

optical microscopy [ 1-3, 51 during magnetic instabilities result in the presence of 

(a) 

Exchange of Stability I 
(b) 

Figure 8. Schematic of wall transformation: (a) Splay-bend wall; (b )  Twist wall 
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transient banded textures. The bands consist of alternating dark and light parallel 
regions in the direction of the applied magnetic field. The evolution of the response 
can be followed with optical microscopy by continuously digitizing the recording 
camera output, as done by McClymer and Labes [28]. A qualitative comparison of 
our numerical calculations with the experimental observations of the dynamic banded 
textures can be effected by calculating the intensity of transmitted light. 

Nematic polymers are optically uniaxial materials that divide a ray of linearly 
polarized light into an ordinary and an extraordinary beam of light (barring the 
exceptional case in which the light beam is perfectly aligned with the optic axis). As 
the light ray traverses the sample, a phase difference between these two beams occurs 
due to the difference in refractive indices. By placing the birefringent cell between a 
polarizer and an analyser, interference patterns due to the phase-lag between the two 
beams are obtained beyond the analyser. These interference patterns are the result of 
minimum or maximum light-intensity transmission. The differential phase difference 
d6 of a birefringent material within a path of length dy is given by [29] 

no and n, are the refractive indices for the ordinary and extraordinary beams, respect- 
ively, and A is the wave length of light. Here we have assumed that the difference 
between the refractive indices is small compared to their magnitudes, that the angle 
between the axis of indicence and the light rays within the cell is zero, and that the 
angle of the incident light beam with the optic axis is n/2 radians. The intensity I (z ,  t )  
of transmitted light through the birefringent cell between crossed polarizers with the 
polarizer in the z-direction is [30] 

(91 I (z ,  t )  = s,” dy [ E’ sin’ 28( y ,  z ,  t )  sin’ 

where E is the amplitude of the incident light and D is the cell thickness. The value 
of the integral when 8 is aligned at 45” is D/4; we denote four times this value I, (i.e. 
I,, = DE’ sin’ (d2/2)), in which case the relative intensity of transmitted light I,(z/L, t )  
is 

T f l  

I,(Z/L, t )  = f_ = J d( y/D)[sin’ 8 cos’ 81. 
10 0 

Figure 9 shows the computed evolution of the relative intensity of transmitted 
light I ,  as a function of dimensionless distance z / L  for a wave length LID = 3. At 
early times (curve A) the intensity profile remains close to zero, but at longer times 
the middle region is isolated by regions of growing light intensity (curves B and C). 
As time goes on there is a sharpening of these regions, with the extinction region 
becoming narrower and the adjacent regions remaining of equal intensity but broader 
(curve D). The splay-bend walls cannot persist because of the out-of-plane instability, 
and they will give way to twist walls. 

The evolution of the light intensity can be converted into a set of pictures by 
digitizing the profiles and linearly mapping the numbers onto a light scale. Figure 10 
shows the appearance and evolution of the banded textures, in qualitative agreement 
with the experimental observations [ I ,  51 and measurements [28]. As expected, the 
early time behavior shows a homogeneously dark sample (curve A), which gives way 
to an incipient banded texture (curve B). At longer times there is a narrowing of the 
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Figure 9. Computed relative intensity of transmitted light through crossed polarizers as a 
function of dimensionless distance, LID = 3. Curve A, t = 0.88 hours; B, 1.35; C, 2.38; 
D, 3.06. The polarizer is in the z-direction. 

A 

C 

Figure 10. Digitized relative intensity of transmitted light as a function of dimensionless 
distance. The relative maximum intensity is white and the relative minimum is black. A 
to D correspond to the calculated values in figure 9. 
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dark regions, with a brightening of the lighter regions; these are the transient banded 
textures (curve C and D). At still longer times there is little variation in the distribution 
of the light intensity. These textures correspond to the splay-bend inversion walls 
(dark bands) separated by homogeneously aligned regions (light bands). As already 
shown, these walls are unstable to perturbations of the director out of the plane, and 
will result in twist walls that eventually pinch into disclination lines. A likely picture 
corresponding to the twist wall is one with thin dark lines separated by lighter regions. 
These visualizations are consistent with the detailed experimental observations of 
McClymer and Labes [28]. 

6. Conclusions 
The Leslie-Ericksen theory of nematic continua is able to describe the development 

of the banded textures seen during the twist magnetic instability of nematic polymers. 
The linear approximation describes the short-time behaviour, but the non-linear 
terms are required to describe saturation of the director orientation and decay of the 
velocity field. The nonlinearities lead to an in-plane splay-bend wall at long times. 
Splay-bend inversion walls are unstable for most common nematic polymers because 
of anisotropy in the elastic constants, leading to growth of perturbations out of the 
plane. The perturbation probably evolves into a twist wall that decays into a pair of 
disclination lines that move towards the cell surface at later times, but this final stage 
can not be accounted for in the present analysis. The appearance and evolution of the 
banded structures predicted by calculating the intensity of transmitted light through 
crossed polarizers are consistent with the experimental results. 
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Appendix A 
The coefficients q i  in equation (13) are 

y ,  = a2 cos’ 8 - a3 sin’ 8, (A l a )  

q2 = - (az + a3)sin28, (A 1 b) 

y3 = +(a3 + a6)sin28, (A 1 4 
q4 = $a,(sin48) + $(a2 + a3)sin28, (A 1 4 

q6 = +a4 + $(u3 + a,)sin’8. (A If 1 
qs = $a,(sin28)’ + +a4 + +(as - az)cos28 + $(a3 + a )sin2Q, (A 1 e )  

The Parodi relation, equation (4 b), has been used to simplify some equations. 
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